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Abstract
The degenerate state in two-dimensional photonic crystal is studied. The
photonic analogue of the static Jahn–Teller effect is utilized for realizing tunable
propagation through photonic crystal waveguide bends. It is shown that the
resonant coupling of the photon modes at the corner can be tuned by the
symmetry and magnitude of the distortion of the lattice.

(Some figures in this article are in colour only in the electronic version)

Photonic crystals are of importance for numerous applications involving light modulation [1].
One such useful system based on photonic crystals is the high-Q photonic bandgap resonant
cavity that can be realized by introducing a point defect into an otherwise regular photonic
lattice, which induces the existence of exponentially decaying states that appear within the
bandgap. Although the modes of each cavity were tightly confined at the defect sites, overlap
between the nearest-neighbour modes is enough to provide the propagation of photons via
hopping. The guiding and bending of the electromagnetic wave through highly localized defect
modes in a photonic crystal was reported by Bayidir et al [2]. The most important feature of
these coupled cavity waveguides is the possibility of constructing lossless and reflectionless
bends [3, 4]. This ability has a crucial role in overcoming the problem of guiding light around
sharp corners in the optical circuits [5]. It is worth noting that the high efficiency of the sharp
corner photonic crystals waveguide is, to some extent, similar to the behaviour of discrete
solitons in nonlinear waveguide arrays [6].

On the other hand, for application in optical devices, it is important to realize the tunability
of the photonic crystals. A tunable light propagation in Y-shaped waveguides has been recently
reported [7] based on two-dimensional photonic crystals with triangular lattices using liquid
crystals as the linear defect. In this paper we propose to use a tunable splitting of the degeneracy
of the defect state, for tuning the defect mode coupling at the corner of the coupled cavity
waveguide. The effect that we exploit is analogous to the Jahn–Teller effect in solids [8].
It is based on the symmetrical analysis of the splitting of degenerate states by a convenient
distortion of the lattice. In our recent paper [9], we have reported that, in photonic crystals
subject to lattice distortions, the Jahn–Teller phase transition can be observed if the system
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satisfies the critical conditions. The aim of this paper is to show an application of the photonic
analogue of the static Jahn–Teller effect for the design of tunable coupled cavity waveguides.

When studying the Jahn–Teller effect in solids, we consider a crystal subject to phonon
vibrations. In application to photonic crystals, this problem is reduced to studying the defect
photonic crystal subject to mechanical vibrations of the lattice [9]. In this paper we limit
ourselves to studying the photonic crystal under static distortion of the lattice. As a model
material, we consider a two-dimensional square photonic lattice doped by the defect rods. The
point group symmetry of the square lattice is C4v. If the defect rod is localized at the site of
the lattice, then by symmetry it may be described both by one-dimensional A1,2, B1,2 and two-
dimensional E irreducible representations of the group C4v [10]. One-dimensional irreducible
representations result in a non-degenerate photon state. The two-dimensional representation
results in a doubly degenerate state represented by the two 1 × 2 column basis vectors having
the shape of the px and py orbitals [10]. We are going to study the splitting of the degeneracy
of this state.

Our problem now is to find such a perturbation V of the distortion of the lattice, which
results in splitting the doubly degenerate E state. For the two-dimensional photonic crystal,
the eigenvalue problem for the E or H polarization is [11]

(H0(r) + V (r))�(r) = ω2

c2
�(r). (1)

In the first order of perturbation theory, the solution for the eigenfunction should be presented
as �(r) = ∑

i=x,y Ai pi(r), where Ai are unknown coefficients. The unperturbed Hamiltonian

H0 has the symmetry of the simple square lattice, with the solution H0|pi〉 = ω2

c2 |pi〉 giving the
doubly degenerate state with the eigenvalue ω = ω0.

Following the analysis in [9], we can present all distortions of the lattice in terms of
the normal coordinates as a sum of the normal irreducible distortions Rα . Then in the first
approximation, with respect to the magnitude of the lattice distortion, the perturbation can
be extended over normal symmetrized displacements V (r) = ∑

α Rα · ∂V α

∂r |0, where the
deformation potential ∂V α

∂r is calculated at the zero lattice distortion [12]. In the case of
the two-dimensional square lattice with the defect in the site of the lattice, there are allowed
2A1, B1, 2B2 and 2E normal irreducible distortions of the lattice. The A1 perturbation is
a total symmetrical one, while B1 and B2 are antisymmetrical normal distortions described
by the one-dimensional irreducible representations. The E distortion is characterized by
the two-dimensional irreducible representations with the 1 × 2 basis vector, the components
transforming into each other [12].

As follows from the Jahn–Teller theorem [12], to split the doubly degenerate E photonic
state the matrix element of the corresponding perturbation V α

i j = ∫
pi(r)V α(r)p j(r) dr �= 0.

From the symmetry analysis, this matrix element is nonzero if and only if E × E = α. Since
E2 = A1 + A2 + B1 + B2, only perturbations with the symmetry of the A1, B1 and B2 distortions
can shift the degeneracy of the E defect mode.

It is obvious that the interaction of the defect photon state with the total symmetrical
distortion A1 results in equal shifts each of the level of the doubly degenerate state without
lifting the degeneracy. The non-symmetrical B1,2 perturbations can only split the degenerate
photon state. For the B1 distortion, V B1

xx = −V B1
yy and V B1

xy = 0. As a result, the degeneracy of

the E-photonic mode is removed, resulting in two levels ω
B1
1,2 = ω0 ± V B1

xx , being described by
the eigenvectors with the px and py symmetries. For the B2 distortion, V B2

xx = V B2
yy = 0 and

V B2
xy = V B2

xy . This result in the two split |px ± py〉 orbitals with the energy ω
B2
1,2 = ω0 ± V B2

xy .
What follows from this analysis? First, by choosing the perturbation, we can control the

symmetry of the split states. So the B1 perturbation should be applied to the system if we want
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Figure 1. The structure studied of the coupled cavity 90◦ bend waveguide with the corner unit cell
distorted by the B1 perturbation, as shown in the inset.

to get |px〉 and |py〉 symmetries of the split states. By means of the B2 perturbation, we will get
the |px ±py〉 split states. Second, because of the linear dependence of the perturbative potential
on the amplitude of the distortion (V α

i j ∼ |Rα|), the splitting of the doubly degenerate level
should show a linear scaling �ω ∼ vα�r with the magnitude of the distortion of the lattice,
|Rα| = �r , through the deformation potential, vα , as a scaling coefficient. Numerical support
for this conclusion has been presented in [9], where the splitting of the degenerate state in the
one-defect photonic crystal had been studied by means of the supercell technique and finite
difference time domain (FDTD) simulations. We emphasize that the analysis presented allows
one to select the perturbation of the lattice, resulting in a desirable magnitude and symmetry
of the defect state splitting. Therefore, we can tune the splitting of the defect mode both by
frequency and by symmetry.

We turn now to study the coupled cavity 90◦ bend waveguide shown in figure 1. This
system consists of two branches. Here we take the reference system such that the first
waveguide branch (before bending) is directed along the x axis (x branch), and the second
branch (after bending) is directed along the y axis (y branch). To specify the parameters of
the crystal we consider a square photonic crystal of the dielectric rods, embedded in air, with
lattice constant a, radius of the rods r = 0.2a and dielectric constant εr = 11.9. Here, only
modes with odd (TM-like) symmetry are considered, since that is the symmetry of the bands
exhibiting a gap for the square lattice [13]. We study the defect state created by the defect rod
with radius rd = 0.3a and the same dielectric constant εd = 11.9 as the other rods, because
such a defect gives the doubly degenerate E defect state inside the first bandgap [9]. This is
the state that we will now examine.

In order to tune the propagation of the light through the system we place at the corner
the so-called Jahn–Teller cell which is magnified in the inset of figure 1. From the geometry
of this system, we immediately guess that the best coupling between the two branches of the
coupled cavity waveguide will be achieved if we can control the splitting of the |px〉 and |py〉
states of the corner defect. Because of this, the corner Jahn–Teller cell should be distorted by
the B1 perturbation. We consider distortions of the lattice in the limits �r = 0−0.3a, keeping
in mind that only small distortions (�r � a) allow for the validity of the linear approximation
of the perturbative potential.
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Figure 2. Computed transmission coefficient of the structure with �r/a = 0 (broken curve) and
0.13 (full curve) (a). The relative transmission intensity inside the bandgap for the structures with
�r/a = 0 (line with open circles), 0.10 (line with open inverted triangles), 0.13 (line with stars)
and 0.2 (line with open triangles) (b). The inset shows the relative transmission intensity as a
function of the lattice distortion.

To analyse this structure, we use the FDTD simulations, following the technique described
in [14]. Our computational domain is shown in figure 1. It contained 15 × 17 unit cells. Each
unit cell was divided into 20 × 20 discretization grid cells. The computational domain was
surrounded by perfect matched layers, with the thickness corresponding to 10 layers of the
discretization grid. The time step was taken equal to �t = 1/(2�xc) to satisfy the convergence
of the FDTD technique. The numerical simulations were performed with the total number of
time steps equal to 100 000 and 200 000 in order to check if the stationary regime of the FDTD
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Figure 3. Pattern of the z component of the electric field in the frequency domain for the resonant
frequency ω = 0.349 at �r/a = 0 (a) and 0.13 (b).

simulations is reached. The source was simulated as a Gaussian beam in time domain and
in the coordinate space with the width of the beam equal to 40 grid cells. To analyse the
transmission of the structure we collected the signal at the output of the waveguide structure
and compared these data with the reference signal collected at the input of the structure, as
described in [15].

We observed an increase of the light transmission when�r > 0. This distortion is shown in
the inset of figure 1. The transmission decreases at �r < 0, which is the case of the oppositely
directed distortion. The computed transmission coefficient of the structure with �r/a = 0
(broken curve) and 0.13 (full curve) is presented in figure 2(a). Figure 2(b) shows the relative
transmission intensity inside the bandgap for the structures with �r/a = 0, 0.10, 0.13, 0.20.
From these data, we note that the transmission of the structure is very frequency selective with
the width of the transmission peak δω ∼ 10−3 (in relative units). The transmission coefficient
of the structure as a function of the lattice distortion, presented in the inset of figure 2(b), shows
the resonant behaviour with the sharp maximum at �r/a = 0.13. Figures 3(a) and (b) present
the pattern of the z component of the electric field in the frequency domain for the resonant
frequency ω = 0.349 at �r/a = 0 and 0.13, respectively.

We will analyse this system in terms of the tight-binding model [2]. In the first
approximation, the doubly degenerate state of the linear n-site chain generates the two bands
ω‖ = ω0 ± β‖ and ω⊥ = ω0 ± β⊥. Here β‖ is the coupling coefficient between the |px〉 (or
|py〉) states at the x (or y) branch, and β⊥ is the coupling coefficient between the |py〉 (or |px〉)
at the x (or y) branches. In figure 4, the supercell plane-wave calculations show the band
spectrum of each waveguide branch (a), as well as the Poynting vectors for the ω‖ (b) and
ω⊥ (c) bands at the point (0, 0) of the supercell Brillouin zone. The band ω‖ is characterized
by the symmetry of the p orbitals parallel and directed along the defect chain, that is |px〉 for
the x branch and |py〉 for the y branch. The band ω⊥ is characterized by the orthogonal, with
respect to the first band, p orbital, that is the |py〉 and |px〉 orbitals for the x and y branches,
respectively. Because of the much smaller coupling between the |py〉 states than the |px〉 states
at the x branch, β⊥ < β‖. From the width of the bands ω‖ and ω⊥ shown in figure 4, we can
estimate for the defect crystal studied, 2β⊥ = 0.002 and 2β‖ = 0.01. It is of importance for
the linear chain with a finite number of n sites that the spectrum of each band consists of the
n levels distant at ∼2β‖(⊥)/(n − 1).
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Figure 4. (a) Supercell plane-wave calculation of the band spectrum of the supercell, shown in the
inset, which presents the spectrum of each waveguide branch. Distribution of the Poynting vector
for ω‖ (b) and ω⊥ (c) bands, calculated at the point (0, 0) of the supercell Brillouin zone.

It is obvious that the strongest coupling of the cavity modes, and consequently the highest
transmission, will be in the case when the light propagates through the |px〉 states along the x
branch before the bend and through the |py〉 states along the y branch after bending. However,
from figure 4(a) we note the distance between the two bands,ω‖ and ω⊥, is small and, moreover,
for some selective wavevectors these bands overlap. Because of this, the light can tunnel at
the corner from the band ω‖ to the band ω⊥, without flipping the symmetry. But in such a case
a lot of energy is not transmitted across the corner, firstly, during the tunneling and, secondly,
because of a bad coupling between the px modes after bending. The pattern of the Ez field,
shown in figure 3(a), provides evidence that such a propagation of the light is preferable in the
case of �x = 0. As a result, the transmission of such a structure will be small (broken curve
in figure 2(a)).

Now, if the corner cell is distorted by the B1 perturbation, the |px〉 and |py〉 states of the
corner defect are separated by �ω = 2V B1 = vB1�r . The deformation constant can be easily
found from the supercell calculations of the defect level splitting, presented in figure 4(a) of [9].
For the B1 perturbation, vB1 ∼ 0.1.

The transmission coefficient of the structure increases as soon as �r > 0, being at the
maximum at �rvB1 ∼ 2β‖. The reason for this is that the magnitude of the defect level splitting
is governed by the magnitude and symmetry of the lattice distortion. For the distortion shown
in the inset of figure 1, the |px〉 state of the corner defect shifts up in energy, while the |py〉 states
goes down, and vice versa for the opposite directed distortion. If the |px〉 state of the corner
defect goes up in frequency, this results in lowering the probability for tunnelling through this
state without flipping the symmetry. If simultaneously the |py〉 state goes down, coming closer
to the highly transmitted levels for each of the waveguide branches, then the transmission
through the corner should increase. However, for the small distortion of the lattice such that
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�rvB1 � β‖, the effect of the lattice distortion on the spectrum of the y branch is small. The
band spectrum will be still governed by the coupling parameter β,with the wavefunctions being
linear combinations of the all-defect states localized at each of the sites. When �r � 2β‖/vB1

the corner defect within the distorted Jahn–Teller cell becomes independent of the other defects
of the y branch, resulting in a resonance defect state. Its spectrum will be mostly governed by
the lattice distortion, giving the level with the strongly localized wavefunction. The resonant
transmission of the structure is observed when the |py〉 state of the corner defect is matched by
frequency with the lowest level of the px band of the x branch, ωm

‖ = ω0 −β‖. The frequency of
the distorted E states of the corner defect is equal to ωc

1,2 = ω0 ± vB1�r/2. Then the resonant
condition ωc

1,2 = ωm
‖ gives �rvB1 = 2β‖. The width of the resonant peak is determined by

the width of the split |py〉 corner defect state. Taking the value 2β ∼ 0.01, we find that the
resonance should be observed at vB1�r ∼ 0.01 > 0. Using the known value vB1 ∼ 0.1, we
find that this splitting corresponds to the distortion of the lattice �r/a ∼ 0.1, in reasonable
agreement with the FDTD experiment. From figure 2(b) we can follow how the |py〉 split state
of the corner defect moves when we change the lattice distortion. In the case of the opposite
directed distortion �r < 0, the |px〉 and |py〉 states shift in opposite directions as well. As a
result, the transmission coefficient of the structure decreases. The pattern of the Ez field for
�r/a = 0.13 at the resonant frequency ω = 0.349 presented in figure 3(b) provides support
for this analysis.

It is worth mentioning that we have considered here the concrete structure with the given
number of defects for both waveguide branches. This geometry of the structure determines
the resonant frequency of the transmission peak and the required distortion of the corner cell
for the resonant coupling between the two branches. By changing the number of sites in each
of the branches, we can tune the resonant transmission frequency.

In conclusion, in this paper we have shown the application of the static Jahn–Teller effect
for tuning light propagation through a 90◦ bend coupled cavity waveguide based on a two-
dimensional photonic crystal. The structure with working B1 perturbation has been considered.
The propagation of the light has been shown to be characterized by the resonant behaviour
as a function of the lattice distortion, with the sharp maximum corresponding to the best
energy and symmetry coupling between the two branches. The width of the transmission
peak is determined by the width of the split corner defect state. As a result, the transmission
coefficient of the structure is very frequency-selective with the width of the transmission peak
∼ 10−3 (relative units). For the waveguide devices operating at the light wavelength 1.55 µm,
this corresponds to the width of the transmission peak ∼2 nm. In this paper we were dealing
with the static Jahn–Teller effect only. For straightforward implementation of the effect it
could be suggested to construct a photonic crystal on the piezoelectric substrate, giving a
needed distortion of the lattice near the defect [16, 17]. However, more exciting opportunities
will be opened up in the case of the realization of the dynamic Jahn–Teller effect, resulting
in a spontaneous phase transition of the corner Jahn–Teller cell. I believe that the flexibility
of the photonic structures, studied in the present paper, will draw attention to the idea of the
phase transition in photonic crystals.
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